VCU, Department of Computer Science
CMSC 302
Relations 2
Vojislav Kecman

14/09/2015

Reminder About

Basic Properties of Relations

Definitions:
A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

14/09/2015

Representing Relations

-We already know different ways of representing relations. We will now take a closer look at two ways of representation: Zero-one matrices and directed graphs (digraphs).

- If R is a relation from $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ to $B=$
$\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then R can be represented by the zero-one matrix $M_{R}=\left[m_{i j}\right]$ with
$\cdot \mathrm{m}_{\mathrm{ij}}=1$, if $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right) \in R$, and
$\cdot \mathrm{m}_{\mathrm{ij}}=0$, if $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right) \notin \mathrm{R}$.
-Note that for creating this matrix we first need to list the elements in A and B in a particular, but arbitrary order.

Representing Relations

-Example: How can we represent the relation R defined between the set $A\{1,2,3\}$ and set $B\{1,2\}$ where $R=\{(2,1),(3,1),(3,2)\}$ as a zero-one matrix?
-Solution: The matrix M_{R} is given by

$$
M_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Representing Relations

-What do we know about the matrices representing a relation on a set (a relation from A to A) ?
-They are square matrices.
-What do we know about matrices representing reflexive relations?
-All the elements on the diagonal of such matrices $\mathrm{M}_{\text {ref }}$ must be 1s.

14/09/2015

Representing Relations

-What do we know about the matrices representing symmetric relations?
-These matrices are symmetric, that is, $M_{R}=\left(M_{R}\right)^{t}$.

-symmetric matrix, symmetric relation.

-non-symmetric matrix, non-symmetric relation.

Zero-One Reflexive, Symmetric

- Terms: Reflexive, non-reflexive, irreflexive, symmetric, asymmetric, and antisymmetric.
- These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

$$
\begin{gathered}
\text { Irreflexive: } \\
\text { all 0's on diagona }
\end{gathered}
$$ all identical

across diagonal

all 1's are across from 0's

Representing Relations

-The Boolean operations join and meet can be used to determine the matrices representing the union and the intersection of two relations, respectively.
-To obtain the join of two zero-one matrices, we apply the Boolean "or" function to all corresponding elements in the matrices.
-To obtain the meet of two zero-one matrices, we apply the Boolean "and" function to all corresponding elements in the matrices.

Representing Relations Using Matrices

-Example: Let the relations R and S be represented by the matrices

-What are the matrices representing $R \cup S$ and $R \cap S$?
-Solution: These matrices are given by
$M_{R \cup S}=M_{R} \vee M_{S}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
$M_{R \cap S}=M_{R} \wedge M_{S}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

14/09/2015

Representing Relations Using Matrices

-Do you remember the Boolean product of two zero-one matrices?
-Let $A=\left[a_{i j}\right]$ be an $m \times k$ zero-one matrix and $B=\left[b_{i j}\right]$ be a $k \times n$ zero-one matrix.
-Then the Boolean product of A and B, denoted by $A o B$, is the $m \times n$ matrix with (i, j)th entry $\left[\mathrm{c}_{\mathrm{ij}}\right]$, where
$-c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 i}\right) \vee \ldots \vee\left(a_{i k} \wedge b_{k j}\right)$.
$-c_{i j}=1$ if and only if at least one of the terms
$\left(a_{i n} \wedge b_{n j}\right)=1$ for some n; otherwise $c_{i j}=0$.

14/09/2015

Representing Relations Using Matrices

-This gives us the following rule:
$-M_{B \circ A}=M_{A} O M_{B}$
-In other words, the matrix representing the composite of relations A and B is the Boolean product of the matrices representing A and B.
-Analogously, we can find matrices representing the powers of relations:
$-M_{R^{n}}=M_{R}{ }^{[n]} \quad$ (n-th Boolean power).

Representing Relations Using Matrices

-Example: Find the matrix representing R^{2}, where the matrix representing R is given by
-Solution: The matrix for R^{2} is given by
$M_{R}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$

$$
M_{R^{2}}=M_{R}^{[2]}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

How did we get this one? Well,

1 0
1 0

Representing Relations Using Digraphs

-Definition: A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
-The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.
-We can use arrows to display graphs.

Representing Relations Using Digraphs

-Example: Display the digraph with $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$,
$E=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}$.

-An edge of the form (b, b) is called a loop

14/09/2015

Using Directed Graphs

- Def. A directed graph or digraph $G=\left(V_{G}, E_{G}\right)$ is a set V_{G} of vertices (nodes) with a set $E_{G} \subseteq V_{G} \times V_{G}$ of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R: A \times B$ can be represented as a graph $G_{R}=\left(V_{G}=A \cup B, E_{G}=R\right)$.
Matrix representation \mathbf{M}_{R} :
Susan
Joe Mary
Fred
Mark $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
 (blue arrows)

Digraph Reflexive, Symmetric

- It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

4/09/2015

Reflexive: Every node has a self-loop links to itself These are asymmetric \& non-antisymmetric

Irreflexive: No node

Symmetric:
Every link is bidirectional

These are non-reflexive \& non-irreflexive

Closures of Relations, or Relational Closures

- Three types we will study
- Reflexive
- Easy
- Symmetric
- Easy
- Transitive
- Hard

14/09/2015

Representing Relations Using Digraphs

-Obviously, we can represent any relation R on a set A by the digraph with A as its vertices and all pairs $(a, b) \in R$ as its edges.
-Vice versa, any digraph with vertices V and edges E can be represented by a relation on V containing all the pairs in E.
-This one-to-one correspondence between relations and digraphs means that any statement about relations also applies to digraphs, and vice versa.

This then means that digraphs are sets, and that all the set operations apply. We'll use it in closures which come next!

Closures of Relations

Def. For any property X, the " X closure" of a set A is defined as the "smallest" superset of A that has the given property.

The reflexive closure of a relation R on A is obtained by adding (a, a) to R for each $a \in A$. i.e., it is $R \cup I_{A}$

The symmetric closure of R is obtained by adding (b, a) to R for each (a, b) in R. i.e., it is $R \cup R^{T}$ (note in book is R^{-1} used)

- The transitive closure or connectivity relation of R is obtained by repeatedly adding (a, c) to R for each $(a, b),(b, c)$ in R., i.e., it is

$$
R^{*}=\bigcup_{n \in \mathbf{Z}^{+}} R^{n}=R \vee R^{2} \vee R^{3} \cdots \vee R^{n-1} \vee R^{n}
$$

Reflexive closure

- Consider a relation R :
- Note that it is not reflexive
- We want to add edges to make the relation reflexive
- By adding those edges, we have made a nonreflexive relation R into a reflexive relation

- This new relation is called the reflexive closure of R

Reflexive closure example

- Let R be a relation on the set $\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2),(2,0),(2,2)$, and $(3,0)$
- What is the reflexive closure of R ?
- We add all pairs of edges (a, a) that do not already exist

We add edges:
$(0,0),(3,3)$

14/09/2015

Reflexive closure

- In order to find the reflexive closure of a relation R, we add a loop at each node that does not have one
- The reflexive closure of R is $R \cup \Delta$
- Where $\Delta=\{(a, a) \mid a \in R\}$
- Called the "diagonal relation"
- With matrices, we set the diagonal to all 1's, meaning $\Delta=\operatorname{diag}\left(\left[\begin{array}{lll}1 & 1 & \ldots\end{array}\right]\right)$

14/09/2015

Reflexive closure example with matrices

- Let R be a relation on the set $\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2),(2,0),(2,2)$, and (3,0)
- What is the reflexive closure of R ?
- We 'add' a diagonal matrix with ones, called also identity matrix

$$
R=\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right| \cup\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right|
$$

We add entries:
$(0,0),(3,3)$
14/09/2015

Symmetric closure

- Consider a relation R :
- Note that it is not symmetric
- We want to add edges to make the relation symmetric
- By adding those edges, we have made a nonsymmetric relation R into a symmetric relation

- This new relation is called the symmetric closure of R

Symmetric closure

- In order to find the symmetric closure of a relation R, we add an edge from a to b, where there is already an edge from b to a
- The symmetric closure of R is $R \cup R^{T}$
- If $R=\{(a, b) \mid \ldots\}$
- Then $R^{\top}=\{(b, a) \mid \ldots\}$

Symmetric closure example with matrices

- Let R be a relation on the set $\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2),(2,0),(2,2)$, and $(3,0)$
- What is the symmetric closure of R ?
- We add all pairs of edges (a, b) where (b, a) exists - We make all "single" edges into anti-parallel pairs

$$
R=\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right| \cup\left|\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right|=\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right|
$$

We add edges:
$(0,2),(0,3),(1,0),(2,1)$
14/09/2015

Transitive closure

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- First take of a definition:
- In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c
- But there is a path from 1 to 4 with no edge!

Connectivity relation

- R contains edges between all the nodes reachable via 1 edge
- $R \circ R=R^{2}$ contains edges between nodes that are reachable via 2 edges in R (first repeat)
- $R^{2} \cdot R=R^{3}$ contains edges between nodes that are reachable via 3 edges in R (second repeat)
- $\quad R^{n}=$ contains edges between nodes that are reachable via n edges in R
- $\quad R^{*}$ contains edges between nodes that are reachable via any number of edges (i.e. via any path) in R
- Rephrased: R^{*} contains all the edges between nodes a and b when is a path of length at least 1 between a and b in R
- R^{*} is the transitive closure of R
- The definition of a transitive closure is that there are edges between any nodes (a, b) that contain a path between them

Transitive closure

- Informal definition: If there is a path from a to b, then there should be an edge from a to b in the transitive closure
- Second take of a definition:
- In order to find the transitive closure of a relation R, we add an edge from a to c, when there are edges from a to b and b to c - Repeat this step until no new edges are added to the relation
- We will study matrix algorithm (out of few different ways) for determining the transitive closure
- red means added on the first repeat (that will be in R^{2})
teal means added on the second repeat (that will be in R^{3})
14/09/2015

Finding the transitive closure with matrices

- Let \mathbf{M}_{R} be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^{*} is:

of the relation

Continuation of slide 33

- Now you prove that $\mathbf{M}_{R^{*}}=\left|\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right|$

14/09/2015

Sample questions

- Find the zero-one matrix of the transitive closure of the relation R given by:

14/09/2015

Sample questions

$\mathbf{M}_{R}^{[3]}=\mathbf{M}_{R}^{[2]} \odot \mathbf{M}_{R}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] \odot\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

$$
\mathbf{M}_{R^{*}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

14/09/2015

Transitive closure algorithm

- What we did (or rather, could have done):
- Compute the next matrix $\mathbf{M}_{R}^{[i]}$, where $1 \leq i \leq n$
- Do a Boolean join with the previously computed matrix
- For our example:
- Compute $\mathbf{M}_{R}^{[2]}=\mathbf{M}_{R} \circ \mathbf{M}_{R}$
- Join that with \mathbf{M}_{R} to yield $\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]}$
- Compute $\mathbf{M}_{R}^{[3]}=\mathbf{M}_{R}^{[2]} \circ \mathbf{M}_{R}$
- Join that with $\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]}$ from above

Transitive closure algorithm

procedure transitive_closure (M_{R} : zero-one $n \times n$ matrix)
$\mathrm{A}:=\mathrm{M}_{\mathrm{R}}$
B := A
for $i:=2$ to n
begin
$\mathbf{A}:=\mathbf{A} \odot \mathbf{M}_{R}$
$B:=B \vee A$
end $\left\{\mathbf{B}\right.$ is the zero-one matrix for $\left.R^{*}\right\}$

14/09/2015

Equivalence Relations

-Equivalence relations are used to relate बblects that are similar in some way.
-Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
-Two elements that are related by an equivalence relation R are called equivalent.

Equivalence Relations

- Since R is reflexive, every element is equivalent to itself. (For every $a \in S, a R a$).
- Since R is symmetric, a is equivalent to b whenever b is equivalent to a . (If $a R b$ then $b R a$)
- Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent. (If $a R b$ and $b R c$ then $a R c$).
- Obviously, these three properties are necessary for a reasonable definition of equivalence.

Equivalence Relations

The general dea behind an equivalence relation is that it is a classification of objects which are in some wa) "alike" In fact, the relation " $=$ " of equality on any set S is an equivalence relation; that is:
(1) $a=a$ for every $a \in S$.
(2) If $a=b$, then $b=a$.
(3) If $a=b$ and $b=c$, then $a=c$.

More equivalency:

(a) Consider the set L of lines in the Euclidean plane. The relation "is parallel to
is an equivalence relation on L
(b) The classification of animals by species, that is, the relation "is of the same species as", is an equivalence relation on the set of animals
(c) The relation \subseteq of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not symmetric since $A \subseteq B$ does not imply $B \subseteq A$.
(d) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written
if m divides $a-b$. For example, for $m=4$ we have $11 \equiv 3(\bmod 4)$ since 4 divides $11-3$. and $22 \equiv 6(\bmod 4)$ since 4 divides $22-6$. This relation of congruence modulo m is an equivalence relation.

Proof that 'congruence modulo

 m ' is an equivalence relation$11 \equiv 3(\bmod 4)$,
because it's reflexive $11 \equiv 11(\bmod 4)$,
it's symmetric $3 \equiv 11(\bmod 4)$, and it is transitive
$11 \equiv 3(\bmod 4)$ and $3 \equiv-1(\bmod 4)$, results into $11 \equiv-1(\bmod 4)$.

Equivalence Relation More Examples

- "Strings a and b are the same length."(see next slide)
- "Integers a and b have the same absolute value."
- "Integers a and b have the same residue modulo m." (for a given $m>1$, see previous slide)

Equivalence Relations

- Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if $L(a)=L(b)$, where $L(x)$ is the length of the string x.
Is R an equivalence relation?
-Solution:
- R is reflexive, because $L(a)=L(a)$ and therefore aRa for any string a.
- R is symmetric, because if $L(a)=L(b)$ then $L(b)=$ $L(a)$, so if $a R b$ then $b R a$.
- R is transitive, because if $L(a)=L(b)$ and $L(b)=L(c)$, then $L(a)=L(c)$, so $a R b$ and bRc implies aRc.
$\cdot R$ is an equivalence relation.
14/09/2015

Equivalence Classes

-Example: In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse]?
-Solution: [mouse] is the set of all English words containing five letters.
-For example, 'horse' would be a representative of this equivalence class.

Equivalence Classes

-Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a.
-The equivalence class of a with respect to R is denoted by $[a]_{R}$.
-When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class.
-If $b \in[a]_{R}, b$ is called a representative of this equivalence class.

Equivalence Classes

-Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:

- aRb
- $[\mathrm{a}]=[\mathrm{b}]$
- $[\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing$
-Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_{i},
$i \in I$, forms a partition of S if and only if
(i) $\quad \mathrm{A}_{\mathrm{i}} \neq \varnothing$ for $\mathrm{i} \in \mathrm{I}$
(ii) $\quad A_{i} \cap A_{j}=\varnothing$, if $i \neq j$
(iii) $\cup_{i \in 1} A_{i}=S$

14/09/2015

Equivalence Classes

-Theorem: Let R be an equivalence relation on a set S.
-Then the equivalence classes of R form a partition of S. Conversely, given a partition $\left\{A_{i} \mid i \in l\right\}$ of the set S, there is an equivalence relation R that has the sets $A_{i}, i \in I$, as its equivalence classes.

14/09/2015

Equivalence Classes

-Examples: Let S be the set $\{u, m, b, r, o, c, k, s\}$. Do the following collections of sets partition S ?
$\cdot\{\{m, o, c, k\},\{r, u, b, s\}\}$
$\cdot\{\{c, o, m, b\},\{u, s\},\{r\}\}$
$\cdot\{\{b, r, o, c, k\},\{m, u, s, t\}\}$
$\cdot\{\{u, m, b, r, o, c, k, s\}\}$
$\cdot\{\{b, o, o, k\},\{r, u, m\},\{c, s\}\}$
$\cdot\{\{u, m, b\},\{r, o, c, k, s\}, \varnothing\}$
-no (\varnothing not allowed).
14/09/2015

Equivalence Classes

-Example: Let us assume that Frank, Suzanne and George live in Boston, Stephanie and Max live in Lübeck, and Sava lives in Belgrade.
-Let R be the equivalence relation $\{(a, b) \mid a$ and b live in the same city $\}$ on the set $P=\{$ Frank, Suzanne, George, Stephanie, Max, Sava\}.
-Then R = \{(Frank, Frank), (Frank, Suzanne), (Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), (Suzanne, George), (George, Frank), (George, Suzanne), (George, George), (Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie), (Max, Max), (Sava, Sava)\}. ... it continues

Equivalence Classes

-Then the equivalence classes of R are:
$\cdot\{\{F r a n k$, Suzanne, George\}, \{Stephanie, Max\}, \{Sava\}\}.
-This is a partition of P.
-The equivalence classes of any equivalence relation R defined on a set S constitute a partition of S, because every element in S is assigned to exactly one of the equivalence classes.

14/09/2015

Quick survey

- I understood the material in this slide set...
a) Very well, or close
b) With some review, I'll be good
c) Not really
d) Not at all

Equivalence Classes

-Another example: Let R be the relation $\{(a, b) \mid a \equiv b(\bmod 3)\}$ on the set of integers.
-Is R an equivalence relation?

- Yes, R is reflexive, symmetric, and transitive.
-What are the equivalence classes of R ?
$\cdot\{\{\ldots,-6,-3,0,3,6, \ldots\}$,
$\{\ldots,-5,-2,1,4,7, \ldots\}$,
$\{\ldots,-4,-1,2,5,8, \ldots\}\}$
14/09/2015

Quick survey

The pace of the lecture for this slide set was...
a) Fast
b) About right
c) A little slow
d) Too slow

14/09/2015

Quick survey

- How interesting was the material in this slide set? Be honest!
a) Wow! That was coooo $0_{000001!}$
b) Somewhat interesting
c) Rather boring

』) $2 z z z z z z z Z Z z Z z Z Z Z Z Z Z Z Z Z 7$

14/09/2015 $57 / 57$

