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Reminder About

Basic Properties of Relations

Definitions:

A relation R on a set A is called reflexive if (a, a)R for 
every element aA.

A relation R on a set A is called symmetric if (b, a)R
whenever (a, b)R for all a, bA.

A relation R on a set A is called transitive if whenever 
(a, b)R and (b, c)R, then (a, c)R for a, b, c  A.
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Representing Relations

•We already know different ways of representing relations. We will 
now take a closer look at two ways of representation: Zero-one 
matrices and directed graphs (digraphs).
•If R is a relation from A = {a1, a2, …, am} to B = 
{b1, b2, …, bn}, then R can be represented by the zero-one matrix 
MR = [mij] with
•mij = 1,   if (ai, bj)R, and
•mij = 0,  if (ai, bj)R.

•Note that for creating this matrix we first need to list the elements 
in A and B in a particular, but arbitrary order.
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Representing Relations

•Example: How can we represent the relation R defined 
between the set A{1, 2, 3} and set B{1, 2} where
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

•Solution: The matrix MR is given by 

0 0
1 0
1 1

RM
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Representing Relations
•What do we know about the matrices representing a relation 
on a set (a relation from A to A) ?
•They are square matrices.
•What do we know about matrices representing reflexive
relations?
•All the elements on the diagonal of such matrices Mref must 
be 1s.

1
1
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Representing Relations
•What do we know about the matrices representing symmetric 
relations?
•These matrices are symmetric, that is, MR = (MR)t.

1 0 1 1
0 1 0 0
1 0 0 1
1 0 1 1

RM

 
 
 
 
 
 

•symmetric matrix,
symmetric relation.

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

RM

 
 
 
 
 
 

•non-symmetric matrix,
non-symmetric relation.
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Zero-One Reflexive, Symmetric
• Terms: Reflexive, non-reflexive, irreflexive,

symmetric, asymmetric, and antisymmetric.
– These relation characteristics are very easy to 

recognize by inspection of the zero-one matrix.

Reflexive:
all 1’s on diagonal

Irreflexive:
all 0’s on diagonal

Symmetric:
all identical

across diagonal

Antisymmetric:
all 1’s are across

from 0’s

any-
thing

any-
thing

any-
thing

any-
thing anything

anything
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Representing Relations

•The Boolean operations join and meet can be used to 
determine the matrices representing the union and the 
intersection of two relations, respectively.

•To obtain the join of two zero-one matrices, we apply the 
Boolean “or” function to all corresponding elements in the 
matrices.

•To obtain the meet of two zero-one matrices, we apply the 
Boolean “and” function to all corresponding elements in the 
matrices.
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Representing Relations Using Matrices
•Example: Let the relations R and S be represented by the 
matrices

1 0 1
1 1 1
1 1 0

R S R SM M M

 
     
  

1 0 1
0 1 1
1 0 0

SM
 
   
  

•What are the matrices representing RS and RS?

•Solution: These matrices are given by

1 0 1
0 0 0
0 0 0

R S R SM M M

 
     
  

1 0 1
1 0 0
0 1 0

RM
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Representing Relations Using Matrices

-Do you remember the Boolean product of two zero-one 
matrices?

-Let A = [aij] be an mk zero-one matrix and 
B = [bij] be a kn zero-one matrix.
-Then the Boolean product of A and B, denoted by AB, is 
the mn matrix with (i, j)th entry [cij], where
-cij = (ai1  b1j)  (ai2  b2i)  …  (aik  bkj). 

-cij = 1 if and only if at least one of the terms
(ain  bnj) = 1 for some n; otherwise cij = 0.
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Representing Relations Using Matrices

-Let us now assume that the zero-one matrices 
MA = [aij], MB = [bij] and MC = [cij] represent relations A, B, and 
C, respectively.
-Remember: For MC = MAMB we have:
-cij = 1 if and only if at least one of the terms
(ain  bnj) = 1 for some n; otherwise cij = 0.
-In terms of the relations, this means that C contains a pair (xi, 
zj) if and only if there is an element yn such that (xi, yn) is in 
relation A and 
(yn, zj) is in relation B.
-Therefore, C = BA  (composite of A and B).
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Representing Relations Using Matrices

-This gives us the following rule:

-MBA = MAMB

-In other words, the matrix representing the composite of 
relations A and B is the Boolean product of the matrices 
representing A and B.

-Analogously, we can find matrices representing the powers 
of relations:

-MRn = MR
[n] (n-th Boolean power).
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Representing Relations Using Matrices
•Example: Find the matrix representing R2, where the matrix representing 
R is given by

0 1 0
0 1 1
1 0 0

RM
 
   
  

•Solution: The matrix for R2 is given by

2
[2]

0 1 1
1 1 1
0 1 0

RR
M M

 
    
  

How did we get this one? Well, …

0 1 0 0 1 0 (0 0) (1 0) (0 1) 1 1
0 1 1 0 1 1 1 (0 1) (1 1) (1 0) 1
1 0 0 1 0 0 0 1 (1 0) (0 1) (0 0)
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Representing Relations Using Digraphs

•Definition: A directed graph, or digraph, consists of a set V 
of vertices (or nodes) together with a set E of ordered pairs of 
elements of V called edges (or arcs).
•The vertex a is called the initial vertex of the edge (a, b), and 
the vertex b is called the terminal vertex of this edge.

•We can use arrows to display graphs.
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Representing Relations Using Digraphs
•Example: Display the digraph with V = {a, b, c, d}, 
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

aa bb

ccdd

•An edge of the form (b, b) is called a loop.
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Using Directed Graphs

• Def. A directed graph or digraph G=(VG,EG) is a set VG of 
vertices (nodes) with a set EGVG×VG of edges 
(arcs,links).  Visually represented using dots for nodes, 
and arrows for edges.  Notice that a relation R:A×B can 
be represented as a graph GR=(VG=AB, EG=R).

















   1   00
010
0   1      1   

Mark
Fred
Joe

SallyMarySusan

Matrix representation MR: Graph representation GR:

Joe
Fred

Mark

Susan
Mary
Sally

Node set VG
(black dots)

Edge set EG
(blue arrows)
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Digraph Reflexive, Symmetric

• It is extremely easy to recognize the 
reflexive/irreflexive/ symmetric/antisymmetric
properties by graph inspection.










Reflexive:
Every node

has a self-loop

Irreflexive:
No node

links to itself

Symmetric:
Every link is
bidirectional

 
Antisymmetric:

No link is
bidirectional

 



These are asymmetric & non-antisymmetric These are non-reflexive & non-irreflexive
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Representing Relations Using Digraphs

•Obviously, we can represent any relation R on a set A by the 
digraph with A as its vertices and all pairs (a, b)R as its 
edges.

•Vice versa, any digraph with vertices V and edges E can be 
represented by a relation on V containing all the pairs in E.

•This one-to-one correspondence between relations and 
digraphs means that any statement about relations also applies 
to digraphs, and vice versa.

This then means that digraphs are sets, and that all the set 
operations apply. We’ll use it in closures which come next!
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Closures of Relations, or
Relational Closures

• Three types we will study

– Reflexive
• Easy

– Symmetric
• Easy

– Transitive
• Hard
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Closures of Relations
• Def. For any property X, the “X closure” of a set A is defined as 

the “smallest” superset of A that has the given property.

The reflexive closure of a relation R on A is obtained by 
adding (a, a) to R for each aA.   i.e., it is R  IA
The symmetric closure of R is obtained by adding (b,a) to R
for each (a, b) in R.  i.e., it is R  RT(note in book is R-1 used)

• The transitive closure or connectivity relation of R is 
obtained by repeatedly adding (a,c) to R for each (a,b),(b,c) in 
R.,   i.e., it is





Zn

nRR* 2 3 1n nR R R R R    
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• Consider a relation R:
– Note that it is not reflexive

• We want to add edges to 
make the relation reflexive

• By adding those edges, 
we have made a non-
reflexive relation R into 
a reflexive relation

• This new relation is called the reflexive closure of R

Reflexive closure

a

f

b

d
c

e

g
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Reflexive closure

• In order to find the reflexive closure of a 
relation R, we add a loop at each node 
that does not have one

• The reflexive closure of R is R U
– Where  = { (a, a) | a  R }

• Called the “diagonal relation”
– With matrices, we set the diagonal to all 1’s, 

meaning  = diag([1 1 1 … 1]) 
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Reflexive closure example

• Let R be a relation on the set { 0, 1, 2, 3 } containing the 
ordered pairs (0,1), (1,1), (1,2), (2,0), (2,2), and (3,0)

• What is the reflexive closure of R?
• We add all pairs of edges (a,a) that do not already exist

0 1

3 2

We add edges:
(0,0), (3,3)
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Reflexive closure example with matrices

• Let R be a relation on the set { 0, 1, 2, 3 } containing the ordered pairs 
(0,1), (1,1), (1,2), (2,0), (2,2), and (3,0)

• What is the reflexive closure of R?
• We ‘add’ a diagonal matrix with ones, called also identity matrix

We add entries:
(0,0), (3,3)

0 1 0 0
0 1 1 0
1 0 1 0
1 0 0 0

R 

1 0 0 0 1 0 0
0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 0
0 0 0 1

1

11 0 0
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• Consider a relation R:
– Note that it is not symmetric

• We want to add edges to 
make the relation symmetric

• By adding those edges, 
we have made a non-
symmetric relation R into 
a symmetric relation

• This new relation is called the symmetric closure of R

Symmetric closure

a

f

b

d
c

e

g
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Symmetric closure

• In order to find the symmetric closure of a 
relation R, we add an edge from a to b, 
where there is already an edge from b to a

• The symmetric closure of R is R U RT

– If R = { (a,b) | … }
– Then RT = { (b,a) | … }

14/09/2015 27/57

Symmetric closure example

• Let R be a relation on the set { 0, 1, 2, 3 } containing the 
ordered pairs (0,1), (1,1), (1,2), (2,0), (2,2), and (3,0)

• What is the symmetric closure of R?
• We add all pairs of edges (a,b) where (b,a) exists

– We make all “single” edges into anti-parallel pairs

0 1

3 2

We add edges:
(0,2), (0,3)
(1,0), (2,1)
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Symmetric closure example with matrices
• Let R be a relation on the set { 0, 1, 2, 3 } containing the 

ordered pairs (0,1), (1,1), (1,2), (2,0), (2,2), and (3,0)
• What is the symmetric closure of R?
• We add all pairs of edges (a,b) where (b,a) exists

– We make all “single” edges into anti-parallel pairs

We add edges:
(0,2), (0,3), (1,0), (2,1)

0 1 0 0
0 1 1 0
1 0 1 0
1 0 0 0

R 

0 0 1 1 0 1
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 0 0 0

1 1
1

1
1 0 0 0
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Transitive closure
• Informal definition: If there is a path from a to b, then 

there should be an edge from a to b in the transitive 
closure

• First take of a definition:
– In order to find the transitive closure of a relation R, we add an 

edge from a to c, when there are edges from a to b and b to c

• But there is a path from 1 to 4 with no edge!

1
2 3

4
R = { (1,2), (2,3), (3,4) }

(1,2) & (2,3) (1,3)
(2,3) & (3,4) (2,4)

1
2 3

4
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Transitive closure
• Informal definition: If there is a path from a to b, then 

there should be an edge from a to b in the transitive 
closure

• Second take of a definition:
– In order to find the transitive closure of a relation R, we add an 

edge from a to c, when there are edges from a to b and b to c
– Repeat this step until no new edges are added to the relation

• We will study matrix algorithm (out of few different 
ways) for determining the transitive closure

• red means added on 
the first repeat (that will be in R2)

• teal means added on 
the second repeat (that will be in R3)

1
2 3

4
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Connectivity relation
• R contains edges between all the nodes reachable via 1 edge
• R◦R = R2 contains edges between nodes that are reachable via 2 

edges in R (first repeat)
• R2◦R = R3 contains edges between nodes that are reachable via 3 

edges in R (second repeat)
• Rn = contains edges between nodes that are reachable via n edges 

in R

• R* contains edges between nodes that are reachable via any 
number of edges (i.e. via any path) in R
– Rephrased: R* contains all the edges between nodes a and b when is a 

path of length at least 1 between a and b in R

• R* is the transitive closure of R
– The definition of a transitive closure is that there are edges between any 

nodes (a,b) that contain a path between them
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Transitive closure – Matrix Algorithm

1
2 3

4

R = { (1,2), (2,3), (3,4) }

2

0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0

1
1

0 0 0

R
M  

3

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1

0

1
1

R
M  

MR

… it continues 
on slide 35
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Finding the transitive closure 
with matrices

• Let MR be the zero-one matrix of the relation R
on a set with n elements.  Then the zero-one 
matrix of the transitive closure R* is:

][]3[]2[
*

n
RRRRR MMMMM  

Nodes reachable 
with one application 

of the relation

Nodes reachable 
with two applications 

of the relation

Nodes reachable 
with n applications 

of the relation
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Continuation of slide 33

• Now you prove that *

0 1
0 0 1
0 0 0

1

0

1
1

1
0 0 0

R M

1
2 3

4
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Sample questions

• Find the zero-one matrix of the transitive 
closure of the relation R given by:


















011
010
101

RM

]3[]2[
* RRRR MMMM 



















































111
010
111

011
010
101

     
011
010
101

     ]2[
RRR MMM 

1 2

3

1 2

3

]2[
RM
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Sample questions





































































111
010
111

111
010
111

111
010
111

011
010
101

*RM



















































111
010
111

011
010
101

     
111
010
111

     ]2[]3[
RRR MMM 

1 2

3
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Transitive closure algorithm

• What we did (or rather, could have done):
– Compute the next matrix       , where 1 ≤ i ≤ n
– Do a Boolean join with the previously 

computed matrix
• For our example:

– Compute 
– Join that with       to yield
– Compute 
– Join that with                from above

][i
RM

RRR MMM ]2[]3[ 

RRR MMM ]2[

RM

]2[
RR MM 

]2[
RR MM 
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Transitive closure algorithm
procedure transitive_closure (MR: zero-one nn matrix)

A := MR

B := A
for i := 2 to n
begin

A := A    MR

B := B  A
end { B is the zero-one matrix for R* }
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More transitive closure algorithms

• More efficient algorithms exist, such as 
Warshall’s algorithm
– We won’t be studying it in this class
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Equivalence Relations 

•Equivalence relations are used to relate 
objects that are similar in some way.

•Definition: A relation on a set A is called an 
equivalence relation if it is reflexive, 
symmetric, and transitive.

•Two elements that are related by an 
equivalence relation R are called equivalent.
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•Since R is reflexive, every element is equivalent to 
itself.  (For every aS, aRa).
•Since R is symmetric, a is equivalent to b whenever 
b is equivalent to a. (If aRb then bRa)
•Since R is transitive, if a and b are equivalent and b 
and c are equivalent, then a and c are equivalent. (If 
aRb and bRc then aRc).

•Obviously, these three properties are necessary for a 
reasonable definition of equivalence.

Equivalence Relations 
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More equivalency:

Equivalence Relations
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Proof that ‘congruence modulo 
m’ is an equivalence relation

11 3 (mod 4),  
because it's reflexive 11 11 (mod 4),  
it's symmetric 3 11 (mod 4),  
and it is transitive 
11 3 (mod 4) and 3 1 (mod 4),  
results into 11 1 (mod 4).
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Equivalence Relation 
More Examples

• “Strings a and b are the same length.”(see
next slide)

• “Integers a and b have the same absolute 
value.”

• “Integers a and b have the same residue 
modulo m.” (for a given m>1, see 
previous slide)
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Equivalence Relations 

•Example: Suppose that R is the relation on the set of 
strings that consist of English letters such that aRb if 
and only if L(a) = L(b), where L (x) is the length of the 
string x. 
Is R an equivalence relation?
•Solution:
• R is reflexive, because L(a) = L(a) and therefore 

aRa for any string a.
• R is symmetric, because if L(a) = L(b) then L(b) = 

L(a), so if aRb then bRa.
• R is transitive, because if L(a) = L(b) and L(b) = L(c), 
then L(a) = L(c), so aRb and bRc implies aRc.

•R is an equivalence relation.
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Equivalence Classes 

•Definition: Let R be an equivalence relation on a set A. The 
set of all elements that are related to an element a of A is 

called the equivalence class of a. 
•The equivalence class of a with respect to R is denoted by 
[a]R.
•When only one relation is under consideration, we will delete 
the subscript R and write [a] for this equivalence class.
•If b[a]R, b is called a representative of this equivalence 
class.
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Equivalence Classes 

•Example: In the previous example (strings of identical 
length), what is the equivalence class of the word mouse, 
denoted by [mouse] ?

•Solution: [mouse] is the set of all English words containing 
five letters.

•For example, ‘horse’ would be a representative of this 
equivalence class.
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Equivalence Classes 
•Theorem: Let R be an equivalence relation on a set A. The 
following statements are equivalent:
• aRb
• [a] = [b]
• [a]  [b]  

•Definition: A partition of a set S is a collection of disjoint
nonempty subsets of S that have S as their union. In other 
words, the collection of subsets Ai, 
iI, forms a partition of S if and only if 
( i )      Ai   for iI
( ii )     Ai  Aj = , if i  j
( iii )    iI Ai = S
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Examples of 
partitions

a

p

M

1

&

b

a

p

M

1

&

s

a

p

M

1

&

YES

NO

NO

S={a, b, M, p, 1, &}
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Equivalence Classes 
•Examples: Let S be the set {u, m, b, r, o, c, k, s}.
Do the following collections of sets partition S ?

•{{m, o, c, k}, {r, u, b, s}} •yes.

•{{c, o, m, b}, {u, s}, {r}} •no (k is missing).

•{{b, r, o, c, k}, {m, u, s, t}} •no (t is not in S).

•{{u, m, b, r, o, c, k, s}} •yes.

•{{b, o, o, k}, {r, u, m}, {c, s}} •yes ({b,o,o,k} = {b,o,k}).

•{{u, m, b}, {r, o, c, k, s}, } •no ( not allowed).
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Equivalence Classes 

•Theorem: Let R be an equivalence relation on a 
set S. 
•Then the equivalence classes of R form a 
partition of S. Conversely, given a partition 
{Ai | iI} of the set S, there is an equivalence 
relation R that has the sets Ai, iI, as its 
equivalence classes.
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Equivalence Classes 
•Example: Let us assume that Frank, Suzanne and 
George live in Boston, Stephanie and Max live in 
Lübeck, and Sava lives in Belgrade. 

•Let R be the equivalence relation {(a, b) | a and b 
live in the same city} on the set P = {Frank, Suzanne, 
George, Stephanie, Max, Sava}.

•Then R = {(Frank, Frank), (Frank, Suzanne),
(Frank, George), (Suzanne, Frank), (Suzanne, 
Suzanne), (Suzanne, George), (George, Frank),
(George, Suzanne), (George, George), (Stephanie,
Stephanie), (Stephanie, Max), (Max, Stephanie),
(Max, Max), (Sava, Sava)}.    … it continues
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Equivalence Classes 

•Then the equivalence classes of R are:

•{{Frank, Suzanne, George}, {Stephanie, Max}, 
{Sava}}.

•This is a partition of P.

•The equivalence classes of any equivalence relation 
R defined on a set S constitute a partition of S, 
because every element in S is assigned to exactly 
one of the equivalence classes.
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Equivalence Classes 
•Another example: Let R be the relation 
{(a, b) | a  b (mod 3)} on the set of integers.
•Is R an equivalence relation?

•Yes, R is reflexive, symmetric, and transitive.

•What are the equivalence classes of R ?

•{{…, -6, -3, 0, 3, 6, …},
{…, -5, -2, 1, 4, 7, …},
{…, -4, -1, 2, 5, 8, …}}
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Quick survey

• I understood the material in this slide set…
a) Very well, or close
b) With some review, I’ll be good
c) Not really
d) Not at all
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Quick survey

The pace of the lecture for this slide set was…

a) Fast
b) About right
c) A little slow
d) Too slow
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Quick survey
• How interesting was the material in this 

slide set?  Be honest!

a) Wow!  That was cooooooooool!

b) Somewhat interesting
c) Rather boring

d) zzzzzzzzzzzzzzZZZZZZZZZZZ


