1

•We already know different ways of representing relations. We will now take a closer look at two ways of representation: Zero-one matrices and directed graphs (digraphs).

•If R is a relation from A = $\{a_1, a_2, ..., a_m\}$ to B = $\{b_1, b_2, \dots, b_n\}$, then R can be represented by the zero-one matrix $\dot{M}_{R} = [m_{ii}]$ with • $m_{ii} = 1$, if $(a_i, b_i) \in \mathbb{R}$, and • $m_{ii} = 0$, if $(a_i, b_i) \notin R$.

•Note that for creating this matrix we first need to list the elements in A and B in a particular, but arbitrary order.

14/09/2015

3/57

between the set A{1, 2, 3} and set B{1, 2} where $R = \{(2, 1), (3, 1), (3, 2)\}$ as a zero-one matrix?

•Solution: The matrix M_R is given by

Representing Relations

•What do we know about the matrices representing a **relation on a set** (a relation from A to A) ?

•They are **square** matrices.

•What do we know about matrices representing **reflexive** relations?

-All the elements on the diagonal of such matrices $\mathrm{M}_{\mathrm{ref}}$ must be 1s.

Representing Relations•What do we know about the matrices representing symmetric
relations?•These matrices are symmetric, that is, $M_R = (M_R)^t$. $M_R = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$ $M_R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$ •symmetric matrix,
symmetric relation.•non-symmetric matrix,
non-symmetric relation.

Zero-One Reflexive, Symmetric • Terms: Reflexive, non-reflexive, irreflexive, symmetric, asymmetric, and antisymmetric. - These relation characteristics are very easy to recognize by inspection of the zero-one matrix. thing Symmetric: Antisymmetric: Reflexive: Irreflexive: all identical all 1's are across all 1's on diagonal all 0's on diagonal across diagonal from 0's 14/09/2015

Representing Relations Using Matrices

•Example: Let the relations R and S be represented by the matrices

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \qquad M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

•What are the matrices representing $R \cup S$ and $R \cap S$?

•Solution: These matrices are given by

$$M_{R\cup S} = M_R \lor M_S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R\cap S} = M_R \land M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

14/09/2015

Representing Relations Using Matrices

-Let us now assume that the zero-one matrices

 $M_A = [a_{ij}], M_B = [b_{ij}]$ and $M_C = [c_{ij}]$ represent relations A, B, and C, respectively.

-**Remember:** For $M_c = M_A o M_B$ we have:

 $-c_{ij} = 1$ if and only if at least one of the terms $(a_{in} \wedge b_{ni}) = 1$ for some n; otherwise $c_{ii} = 0$.

-In terms of the **relations**, this means that C contains a pair (x_i, z_j) if and only if there is an element y_n such that (x_i, y_n) is in relation A and

 (y_n, z_i) is in relation B.

-Therefore, $C = B \cdot A$ (composite of A and B).

11/57

9/57

-Do you remember the **Boolean product** of two zero-one matrices?

-Let A = $[a_{ij}]$ be an m×k zero-one matrix and B = $[b_{ij}]$ be a k×n zero-one matrix. -Then the **Boolean product** of A and B, denoted by A_oB, is the m×n matrix with (i, j)th entry $[c_{ii}]$, where

 $-c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2i}) \vee \ldots \vee (a_{ik} \wedge b_{kj}).$

 $\label{eq:c_ij} \begin{array}{l} \text{-c}_{ij} = 1 \text{ if and only if at least one of the terms} \\ (a_{in} \wedge b_{nj}) = 1 \text{ for some } n; \text{ otherwise } c_{ij} = 0. \end{array}$

14/09/2015

Representing Relations Using Matrices - This gives us the following rule: $-M_{B\circ A} = M_A O M_B$ - In other words, the matrix representing the **composite** of relations A and B is the **Boolean product** of the matrices representing A and B. - Analogously, we can find matrices representing the **powers** of relations: $-M_{R^n} = M_R^{[n]}$ (n-th **Boolean power**).

Digraph Reflexive, Symmetric

• It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

Reflexive: Irreflexive: No node Every node has a self-loop links to itself These are asymmetric & non-antisymmetric 14/09/2015

Antisymmetric: Symmetric: Every link is No link is bidirectional bidirectional These are non-reflexive & non-irreflexive

17/57

Representing Relations Using Digraphs

•Obviously, we can represent any relation R on a set A by the digraph with A as its vertices and all pairs $(a, b) \in R$ as its edges.

•Vice versa, any digraph with vertices V and edges E can be represented by a relation on V containing all the pairs in E.

•This one-to-one correspondence between relations and digraphs means that any statement about relations also applies to digraphs, and vice versa.

> This then means that digraphs are sets, and that all the set operations apply. We'll use it in closures which come next!

14/09/2015

Closures of Relations, or Relational Closures

- Three types we will study
 - Reflexive
 - Easy
 - Symmetric Easy

```
    Transitive

    Hard

14/09/2015
```

19/57

- Informal definition: If there is a path from *a* to *b*, then there should be an edge from *a* to *b* in the transitive closure
- First take of a definition:
 - In order to find the transitive closure of a relation *R*, we add an edge from *a* to *c*, when there are edges from *a* to *b* and *b* to *c*
- But there is a path from 1 to 4 with no edge!

Connectivity relation • R contains edges between all the nodes reachable via 1 edge • $R \circ R = R^2$ contains edges between nodes that are reachable via 2 edges in R (first repeat) • $R^{2} \circ R = R^{3}$ contains edges between nodes that are reachable via 3 edges in R (second repeat) • R^n = contains edges between nodes that are reachable via *n* edges in R• *R*^{*} contains edges between nodes that are reachable via any number of edges (i.e. via any path) in R Rephrased: R* contains all the edges between nodes a and b when is a path of length at least 1 between a and b in R • R* is the transitive closure of R - The definition of a transitive closure is that there are edges between any nodes (a,b) that contain a path between them 31/57 14/09/2015

Transitive closure algorithm

```
procedure transitive_closure (M_R: zero-one n \times n matrix)

A := M_R

B := A

for i := 2 to n

begin

A := A \odot M_R

B := B \lor A

end { B is the zero-one matrix for R^* }
```

14/09/2015

<section-header><list-item><list-item><list-item><list-item><list-item>

Equivalence Relations

•Since R is **reflexive**, every element is equivalent to itself. (For every $a \in S$, aRa).

•Since R is **symmetric**, a is equivalent to b whenever b is equivalent to a. (If *aRb* then *bRa*)

•Since R is **transitive**, if a and b are equivalent and b and c are equivalent, then a and c are equivalent. (If *aRb* and *bRc* then *aRc*).

•Obviously, these three properties are necessary for a reasonable definition of equivalence.

14/09/2015

14/09/2015

41/57

Equivalence Relations The general idea behind an equivalence relation is that it is a classification of objects which are in some way "alike" In fact, the relation "=" of equality on any set S is an equivalence relation; that is: (1) a = a for every $a \in S$. (2) If a = b, then b = a. (3) If a = b and b = c, then a = c. More equivalency: (a) Consider the set L of lines in the Euclidean plane. The relation "is parallel to is an equivalence relation on L (b) The classification of animals by species, that is, the relation "is of the same species as", is an equivalence relation on the set of animals. (c) The relation \subseteq of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not symmetric since $A \subseteq B$ does not imply $B \subseteq A$. (d) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written $a \equiv b \pmod{m}$

if m divides a - b. For example, for m = 4 we have $11 \equiv 3 \pmod{4}$ since 4 divides 11 - 3, and $22 \equiv 6 \pmod{4}$ since 4 divides 22 - 6. This relation of congruence modulo m is an equivalence relation.

Proof that 'congruence modulo *m'* is an equivalence relation

```
11 \equiv 3 \pmod{4},
```

```
because it's reflexive 11 \equiv 11 \pmod{4},
```

```
it's symmetric 3 \equiv 11 \pmod{4},
```

and it is transitive

 $11 \equiv 3 \pmod{4}$ and $3 \equiv -1 \pmod{4}$,

results into $11 \equiv -1 \pmod{4}$.

43/57

Equivalence Relation More Examples

- "Strings *a* and *b* are the same length."(see next slide)
- "Integers *a* and *b* have the same absolute value."
- "Integers a and b have the same residue modulo m." (for a given m>1, see previous slide)

```
14/09/2015
```

11

44/57

Equivalence Relations

•Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if L(a) = L(b), where L (x) is the length of the string x.

Is R an equivalence relation?

•Solution:

- R is reflexive, because L(a) = L(a) and therefore aRa for any string a.
- R is symmetric, because if L(a) = L(b) then L(b) = L(a), so if aRb then bRa.
- R is transitive, because if L(a) = L(b) and L(b) = L(c), then L(a) = L(c), so aRb and bRc implies aRc.
- •R is an equivalence relation.

14/09/2015

14/09/2015

45/57

Equivalence Classes

•Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is

called the equivalence class of **a**.

•The equivalence class of **a** with respect to R is denoted by $[a]_{R}$.

•When only one relation is under consideration, we will delete the subscript R and write **[a]** for this equivalence class.

•If $b \in [a]_R$, b is called a **representative** of this equivalence class.

14/09/2015

46/57

48/57

Equivalence Classes

•Example: In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse] ?

•Solution: [mouse] is the set of all English words containing five letters.

•For example, 'horse' would be a representative of this equivalence class.

47/57

Equivalence Classes

•**Theorem:** Let R be an equivalence relation on a set A. The following statements are equivalent:

- aRb
- [a] = [b]

• [a] ∩ [b] ≠ Ø

•Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_i , $i \in I$, forms a partition of S if and only if $(i) \quad A_i \neq \emptyset$ for $i \in I$

(ii) $A_i \cap A_j = \emptyset$, if $i \neq j$

(*iii*) ∪_{i∈I} A_i = S

Equivalence Classes		
•Examples: Let S be the set {u, m, b, r, o, c, k, s}. Do the following collections of sets partition S ?		
•{{m, o, c, k}, {r, u, b, s}}	•yes.	
•{{C, o, m, b}, {u, s}, {r}}	•no (k is missing).	
•{{b, r, o, c, k}, {m, u, s, t}}	•no (t is not in S).	
•{{u, m, b, r, o, c, k, s}}	•yes.	
•{{b, o, o, k}, {r, u, m}, {c, s}}	•yes ({b,o,o,k} = {b,o,k}).	
•{{u, m, b}, {r, o, c, k, s}, ∅} ₄/09/2015	•no (∅ not allowed).	50/57

Equivalence Classes

•Theorem: Let R be an equivalence relation on a set S.

•Then the **equivalence classes** of R form a **partition** of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

14/09/2015

51/57

Equivalence Classes

•Example: Let us assume that Frank, Suzanne and George live in Boston, Stephanie and Max live in Lübeck, and Sava lives in Belgrade.

•Let R be the **equivalence relation** {(a, b) | a and b live in the same city} on the set P = {Frank, Suzanne, George, Stephanie, Max, Sava}.

•Then R = {(Frank, Frank), (Frank, Suzanne), (Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), (Suzanne, George), (George, Frank), (George, Suzanne), (George, George), (Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie), (Max, Max), (Sava, Sava)}. ... it continues

Equivalence Classes

•Then the **equivalence classes** of R are:

•{{Frank, Suzanne, George}, {Stephanie, Max}, {Sava}}.

•This is a **partition** of P.

•The equivalence classes of any equivalence relation R defined on a set S constitute a partition of S, because every element in S is assigned to **exactly one** of the equivalence classes.

14/09/2015

53/57

Equivalence Classes

•Another example: Let R be the relation $\{(a, b) \mid a \equiv b \pmod{3}\}$ on the set of integers.

•Is R an equivalence relation?

•Yes, R is reflexive, symmetric, and transitive.

•What are the equivalence classes of R ?

•{{..., -6, -3, 0, 3, 6, ...}, {..., -5, -2, 1, 4, 7, ...}, {..., -4, -1, 2, 5, 8, ...}}

54/57

56/57

Quick survey

- I understood the material in this slide set...
- a) Very well, or close
- b) With some review, I'll be good
- c) Not really
- d) Not at all

14/09/2015

55/57

Quick survey

The pace of the lecture for this slide set was...

- a) Fast
- b) About right
- c) A little slow
- d) Too slow

